
Studying Permission Related Issues in Android
Wearable Apps

Suhaib Mujahid, Rabe Abdalkareem and Emad Shihab
Data-Driven Analysis of Software (DAS) Lab

Concordia University, Montreal, Canada
{s mujahi, rab abdu, eshihab}@encs.concordia.ca

Abstract—Wearable devices are becoming increasingly pop-
ular; these devices host software that is known as wearable
apps. Wearable apps could be packaged alongside handheld apps,
hence they must be installed on the accompanying device (e.g.,
smartphone). This device dependency causes both apps to be
also tightly coupled. Most importantly, when a wearable app is
distributed by embedded it in a handheld app, Android Wear
platform requires to include the wearable permission also in the
handheld app which is error-prone.

In this paper, we defined two permission issues related to
wearable apps–namely permission mismatches and superfluous
features. To study the permission related issues, we propose
a technique to detect permission issues in wearable apps. We
implement our technique in a tool called PERMLYZER, which
automatically detects these permission issues from an app’s APK.
We run PERMLYZER on a dataset of 2,724 apps that have
embedded wearable version and 339 standalone wearable app.
Our result shows that I) 6% of wearable apps that request
permissions are suffering from the permission mismatching
problem; II) out of the apps that requires underlying features,
523 (52.4%) of handheld apps and 66 (80.5%) of standalone
wearable apps have at least one superfluous feature; III) all the
studied apps missed a declaration of underlying features for one
or more of their permissions, which shows that developers may
not know the mapping between the permissions they request and
the hardware features. Additionally, in a survey of wearable app
developers, all of the developers that responded mention that
having a tool like PERMLYZER, that detect permission related
issues would be useful to them. Our results contribute to the
understanding of permissions related issues in wearable apps, in
particular, proposing a technique to detect permission mismatch
and superfluous features.

I. INTRODUCTION

Mobile apps are playing an increasingly important role in
our daily lives. These mobile apps can monitor all kinds of
activities. More recently, wearable devices that run wearable
apps have enhanced the capabilities of these mobile apps.
These wearable apps work closely with mobile apps and can
significantly enhance the user experience.

The close interaction between mobile and wearable apps
introduces its own unique challenges. One particular challenge
is keeping the two apps (mobile and wearable) consistent in
terms of the permissions they require. Permissions are used to
control what an app can access, hence, mobile apps need to
contain a superset of the permissions its associated wearable
app requires. For example, if a wearable app needs access to
the camera or microphone, it needs to explicitly ask for this

permission in its connected mobile app configuration files (i.e.,
AndroidManifest.xml file).

Prior work by Au et al. [1], Stevens et al. [2], and Jha
et al. [3] showed that the management of permissions is com-
plicated and that permissions tend to be commonly misused
by developers. Other work analyzed the permissions for apps
published on Google Play store and focused on explaining
the permissions usage and its implications on security and
privacy [4, 5, 6, 7], permissions mis-usage [2, 1, 8], and
suggesting which permission should be requested [9, 10, 11].
In fact, all of the aforementioned work focused on the permis-
sions of mobile apps exclusively.

To make the situation even worse, the introduction of
wearable devices and apps further complicates the permission
management specially for devices running on Android version
with API level lower than 23, which represent 50% of all the
devices that visited the Google Play store [12]. The mobile
(i.e., handheld) and wearable apps need to be in sync when
requesting permissions (i.e., the wearable app permissions
need to also be requested by its associated mobile app). This
permission model is error-prone which may lead to installation
and device compatibility issues. Thus, it impacts the success
of wearable apps in the market [13]. However, to the best of
our knowledge, no work has examined the permission issues
related to wearables apps.

Therefore, in this paper, we conduct an empirical study to
examine the permission related issues in the context of wear-
able apps. In particular, we focus on two of the most common
issues. First, permission mismatches, which refer to the case
where the permissions declared in the mobile and the wearable
versions of the app do not match. Mismatched permissions
can cause the wearable app to fail in the installation step or
throw a security exception [13]. Second, superfluous features,
which refer to the case where an app declares a permission
that requires a specific hardware resource (e.g., access to the
microphone) but the app does not use that permission. Having
superfluous features can cause the Google Play store to filter
out devices that do not support/have the hardware feature,
reducing the potential customer base for the app [14].

We perform our study on 3,063 (2,724 embedded wearable
apps and 339 standalone wearable apps) free apps from Google
Play store that contain a wearable version. Our findings show
that the permission mismatch issues exist in 6.1% of the
analyzed released wearable apps that request permissions in



our dataset. Moreover, we find that 19.2% of the studied
wearable apps contain superfluous features. To operationalize
our work we built a tool, called PERMLYZER, that automati-
cally detects these two permission related issues from Android
APKs. PERMLYZER can be leveraged by developers to ensure
that their app APKs do not suffer from any permission related
issues prior to release. We also survey developers to better
understand and evaluate the importance of our approach of
detecting permission related issues in wearable apps. All
responses to our survey indicate that having a tool like
PERMLYZER that detects permission related issues would be
useful to them.

This paper makes the following contributions:
• To the best of our knowledge, this is the first study

to examine permission related issues in the context of
wearable apps.

• We define and examine the two main permission related
issues in the context of wearable apps–namely the permis-
sion mismatch problem and superfluous features. We then
perform an empirical study to examine the prevalence
of these permission related issues by investigating 3,063
wearable apps.

• We implement our approach in a tool called PERMLYZER,
which is freely available. Also, to ease replication, all the
data used in our study are publicly available [15].

The remainder of this paper is organized as follows: Sec-
tion II provides a background about Android platform and
wearable related concepts. Section III describes the issues that
are related to wearable apps permission model. Section IV
illustrates our study setup & approach. In Section V, we show
the findings of our empirical study, and we discuss our findings
in Section VI. We discuss the limitations of our study in
Section VIII. Lastly we conclude our paper in Section IX.

II. BACKGROUND

Since wearable apps are fairly new, in this section we
present a brief background on the development of wearable
apps and the Android platform.

A. Android Platform and Distribution of Wearable Apps

Android is an open source platform that runs on different
types of devices, including but not limited to, wearables,
phones, tablets, televisions, and cars [13]. Android apps are
distributed mainly through the Google Play store as APK
archive files. Every APK must contains a configuration file
in its main directory called AndroidManifest.xml. This
file provides the necessary information about the app to the
Android platform. Among other things, the manifest file does
the following: 1) it has a description of the app components,
2) it contains the required list of the used permissions, 3) it has
the declarations of the required hardware or software features,
and 4) it specifies the minimum and target API level [16].

The Android platform also provides a framework of ap-
plication programming interfaces (APIs) that apps use to
interact with the underlying functionality of the platform (e.g.,
CAMERA and MICROPHONE). Each Android platform version

is assigned a unique integer identifier, called the API level.
Whenever a new platform version releases with an API change,
the API level changes to a higher number. The new API
remains compatible with all earlier API levels. Therefore, apps
that are designed for a specific API level can run on a higher
level, but it cannot run on a lower level [17].

Wearable apps on the Android platform can be distributed in
two ways: 1) by embedding the wearable app inside a handheld
app; or 2) by publishing more than one APK under the same
app listing, using the multiple APKs feature of the Google
Play store. When a user installs the handheld app, the Android
platform will automatically install the wearable app on the
paired wearable device [18, 19].

B. The Concept of Permissions in Android Platform

A permission is a restriction that limits access to sensitive
data or dangerous device functionalities. The limitation is
imposed to protect critical data and functionalities that could
be misused to distort or damage the user experience [16]. Thus,
developers request permissions to have access to sensitive
data or high risk device functionalities. These permissions are
declared in the AndroidManifest.xml file by adding the
<uses-permission> element and specify the permission
name in the attribute android:name. Line 2 in Listing 1
is an example of declaring a permission to read the received
SMS.

Permissions have a protection level to characterize the po-
tential risk implied in the permission. It indicates the procedure
that the Android platform follows when determining whether
or not to grant the permission to an app requesting it. The
Android platform automatically grants permissions from the
Normal protection level (e.g., BLUETOOTH) at installation,
without asking for the user’s explicit approval; and Danger-
ous permissions (e.g., CAMERA and MICROPHONE) that are
requested by an app are displayed to the user and require
confirmation before they are granted. Also, third-party apps
can ask for permissions from both, the Normal and Dangerous
protection level categories.

Listing 1: An example of the AndroidManifest.xml file.
1 <manifest . . . >
2 <uses-permission android:name="android.

permission.READ_SMS" />
3 <uses-feature android:name="android.hardware.

telephony" android:required="
true" />

4 . . .
5 <application . . .>
6 <activity android:name="com.example.project.

FreneticActivity" android:permission="
com.example.project.DEBIT_ACCT" . . . >

7 . . .
8 </activity>
9 </application>

10 </manifest>

Specific to wearable apps, developers have to match per-
missions that are requested in the wearable version with
permissions requested in the handheld version. In other words,
all requested wearable permissions have to also be listed in the

2



manifest file of the handheld app [18]. However, the release
of Android 6.0 (API level 23) introduced some major changes
in the permission model; 1) apps that target and run on API
level 23 or higher require users to grant their permission at
the runtime instead of grant all the permission at once upon
installation; and 2) wearable apps cannot receive permissions
granted to the handheld apps [20, 21]. These changes affect
how wearable app permissions are declared.

C. App Compatibility

The Android platform is designed to run on different types
of devices, from wearables to phones and tablet devices. This
range of devices provides a huge potential audience for an app.
The Android devices have many different configurations, such
as different hardware features, software features, the platform
version, and screen configurations. To reach the largest possi-
ble user-base for an app, developers attempt to support as many
device configurations as possible. Unfortunately, supporting
all device configurations is impossible. In order to manage an
app’s availability based on device features, the Android plat-
form defines feature IDs for hardware and software features
that may not be available on all devices. Thus, developers can
restrict their app’s availability to devices through the Google
Play store based on the device characteristics [22, 23]. When
a developer uploads an app to the Google Play store, the store
scans the app’s manifest file and evaluates its elements such
as the platform API level, declared features and requested
permissions to establish the set of required features. On the
user side, when a user browses an app on the Google Play
store, the store compares the features that the app declared
to the features available on the user’s device to determine
compatibility with the available devices [22]. Based on the
previous process, the store decides whether the app is available
to install on the user’s device or not.

Developers declare all hardware and software features that
their apps depends on in the AndroidManifest.xml
file. The developers declare the features that their apps
depends on by adding <uses-feature> element to
the manifest file. This element has two main attributes:
1) android:name, to specify the name of the feature; and
2) android:required, to specify whether the app requires
and cannot function without the declared feature, or whether
it prefers to have the feature but can function without it [14].
Line 3 in Listing 1 is an example of a feature declaration for
an app that depends on telephony functionalities.

For apps that request permissions that depend on hardware
features, the Google Play store assumes that the apps use
these underlying features and therefore requires the features
even if there is no explicit mention of the required fea-
tures in the manifest file. For such permissions, the Google
Play store adds the underlying features to the metadata that
it stores for every app and sets up filters for them. For
example, if an app requests the RECORD_AUDIO permis-
sion but does not declare an <uses-feature> element
for android.hardware.microphone, the Google Play
store considers that the app requires a microphone and should

not be shown to users whose devices do not have a micro-
phone [14]. To avoid setting filters for hardware features that
the app can operate without them, the app developer must
declare the underlying features in the manifest file and give
the value false to the attribute android:required.

III. PERMISSION RELATED ISSUES

In this section, we illustrate the challenges of dealing with
permission related issues in the context of the wearable app
development. First, we enhance the discussion by presenting
a motivating example. Second, we present the main two
wearable apps permission related issues that are addressed in
our study.
Motivating Example: According to the wearable permission
model, wearable apps should match their handheld and wear-
able permissions. For example, if a wearable app needs to
have the functionality to send a SMS, the app requests the
permission SEND_SMS. As a response to the permission
matching requirement, the handheld app should request the
same permission even if it does not need it. When a user
installs the handheld app, the Android platform installs the
wearable app on the paired wearable device. Subsequently,
the wearable app, which needs to support devices that run
API level lower than 23, inherits the permissions that the
platform granted to the handheld app. Failing to match the
permissions can cause problems since the wearable app can-
not get the required permissions. On the other hand, if the
handheld app requests the permission SEND_SMS, the Google
Play store will consider it as depending on a telephony
functionality even if the app does not request the feature
android.hardware.telephony. Hence, the handheld
app will not be available in devices that do not have the
telephony functionality, e.g., most of tablet devices.

In the following subsections, we discuss how wearable app
permission related issues may affect wearable apps. We focus
on the following two permission related issues: 1) Permission
mismatches between the handheld and wearable apps; and
2) Missing the declaration of underlying features of the
requested permissions.

A. Permission Mismatches

Description: To distribute a wearable app to users, the wear-
able APK can be embedded in a handheld APK. Then, when
a user installs the handheld app, the Android platform pushes
the embedded wearable app to the paired wearable device. If
the user grants the permissions to the handheld app during
the installation process, the wearable app inherits the granted
permissions from the handheld app. To ensure that the user
grants the wearable app’s permissions, developers are required
to match the wearable app’s permissions with the handheld
app’s permissions by including all the permissions declared
in the wearable’s manifest into the handheld’s manifest. This
process should be performed even if the handheld app does
not use those permissions [24]. In case the permissions are
not requested properly, i.e., a wearable version of an app may
request a permission that is not requested by the handheld

3



Alternative app 
stores

Collect 5,077 app 
identifiers

Filter out the 
paid apps

Find 3,129 free 
apps

Crawl the apps 
form Play Store

2,724 Embedded 
wearable apps

339 Standalone 
wearable apps

Fig. 1: Overview of the data collection process.

version of the app. We call this case permission mismatch
problem.
Implication: As a result, a wearable app that suffers from
the permission mismatch problem cannot grant its permissions
which may lead to one of the following problems; 1) the
wearable app fails to be installed on the wearable device,
2) throws a security exception and/or crash the app [25].
Additionally, the permission mismatch problem is particularly
problematic since: 1) it does not raise compilation errors or
print any log messages; 2) it runs normally on the emulator
or any wearable devices using Android Debug Bridge (adb);
3) it is not automatically detected as a problem by the IDEs,
including Android Studio; and 4) it is hard to catch since it
affects only the devices that run with API level lower than 23.
Hence, the permission mismatch problem is usually caught by
users.
B. Superfluous Features

Description: Feature declarations in the manifest file are infor-
mational only, which means that the Android platform does not
check them before installing an app. However, some app stores
such as, Google Play, checks the feature declarations when
it interacts with apps. According to the Android developer
documentation, missing a feature declaration used by an app
should be considered an error [14].

Features and permissions that an app declares in the mani-
fest file can affect the filtering step that the Google Play store
performs. The Google Play store uses features and permissions
to determine whether an app is compatible with a device, or the
app depends on features that are not available on the device.
The app store checks the permissions in the manifest file of
each app and sets up filters for apps that have permissions
which require underlying features even if they are not declared.
Thus, requesting a permission in the manifest file causes the
Google Play store to set filters for features that the app does
not depend on. As a result, the app store filters out the app
from compatible devices. Hence, for permissions that depend
on underlying features, developers must explicitly specify in
the manifest file whether the app cannot function without the
underlying feature, or whether it prefers to have the feature
but can function without it.
Implication: In case an app misses to declare an underlying
feature, the Google Play store automatically adds the feature to
the metadata that it stores for the app. Based on the metadata,
the store sets up filters for the features even if the app can
handle the absence of such features. Moreover, the underlying
features could belong to unused permissions, which the app
requests without using the functionalities that they grant to the

app - we call such a case the superfluous feature. As a result,
the superfluous features unexpectedly filters out legitimate
compatible devices, which reduces the potential customer base
for an app, and negatively impacts its revenues.

IV. STUDY SETUP & APPROACH

In this section, we detail our dataset collection, and present
PERMLYZER, an automated approach to detect permission
related issues. Figure 2 describes our automated approach and
the following subsections detail our approach.

A. Dataset

As shown in Figure 1, we select the available Android Wear
apps in the Google Play store by collecting their identifiers
from two alternative app markets: Android Wear Center [26]
and GoKo Store [27], accessed on July 7th, 2017. By filtering
out paid apps from the set of 5,077 apps, we were able to
collect 3,129 free apps. We focus on free apps since we need
to download and unpack the apps. In order to download the last
version of the selected apps, we built a crawler that interfaces
with the Google Play store’s API as a regular mobile device
to download the handheld apps and as a wearable device
to download the standalone wearable apps. The apps’ APKs
were collected from July 19th through 21st, 2017. We were
able to download and unpack 3,063 apps, since some of the
apps are not available on Google Play store anymore. After
downloading and unpacking the apps, we find 2,724 apps
contains an embedded wearable app and 339 apps have a
standalone wearable app.

B. Detecting Permission Mismatches

To detect permission mismatches, we start by extracting
the embedded wearable app from the handheld app’s APK.
Then, we extract the permissions from both embedded and
handheld APKs. Next, we identify if the permission model
of the wearable app requires matching the permissions; if
so, all permissions in the embedded wearable app should
be requested in the handheld app. Finally, we detect the
permission mismatches by examining the permission of the
wearable and the handheld app. The following subsections are
the detailed steps to automatically analyze APK files of an
wearable app and detect the permission mismatch problem.
Figure 2 (Section 1 ) illustrates the automated approach
overview.

1) Extract the Embedded Wearable APK: In order to extract
the APK file of the embedded wearable app, we first unpack
the handheld app’s APK and decode the resources using
APKTOOL [28], a tool for reverse engineering Android apps.

4



Generate the final 
report and suggest fixes

Handheld apps’ 
APK file

Detecting Superfluous Features

Detecting Permission Mismatches

Identify the 
permission model

Identify Unused 
Permissions

Detect Superfluous 
Features

Detect Permission 
Mismatches

Extract the 
permissions

Extract the 
embedded app

Identifying the 
Underlying Features

Extract the 
Declared Features

1

2

Fig. 2: Approach overview.

The tool allows us to retrieve the original form of the XML
files. After we obtain the unpacked resources for the handheld
app, we need to identify the path to the wearable version’s
APK file, so we apply the following steps: 1) extract and
parse the XML tree of AndroidManifest.xml file from
the main directory, 2) select the metadata tag that refers
to the wearable app description file1 by targeting the tag
name com.google.android.wearable. beta.app,
and 3) parse the XML tree for the description file and
extract the path of the wearable APK by targeting the
rawPathResId tag. In some cases, a handheld manifest
file has a configuration mistake, e.g., missing the path of the
wearable app description file, or incorrect APK path could
cause a failure in detecting the wearable APK. In such case, we
use the MANIFEST.MF file to detect the path of the wearable
APK.

Every Java package has the file MANIFEST.MF as a default
manifest, which is stored in the META-INF directory, the
default manifest used to define extensions and package-related
data, such as the list of files and their paths. Since the APK file
of the wearable app is packaged inside its handheld app APK,
we use regular expressions to search for paths of all files with
.apk extension from the MANIFEST.MF file. In the case of
multiple APK files, we extract and unpack them to figure out
which ones belong to the wearable app. We distinguish the
wear app’s APK based on three heuristics, which include: 1)
matching the package ID of the embedded and handheld apps,
2) looking at the name of the APK file that contains keywords
such as ‘wear’, and/or 3) looking for the usage of tags that
indicate the use of wearable hardware in the manifest file, e.g.,
android.hardware.type.watch.

2) Extract the Requested Permissions: First, we parse
the file AndroidManifest.xml for both of the hand-
held app and the embedded wearable app. Second, for both
manifests, we select the permissions by identifying the tags
<uses-permission>; then for each tag we read the value
of the attribute android:name. Finally, we check if the
permission(s) belongs to the Android Open Source Project
(AOSP) or to a third party app. We distinguish between
permissions related to AOSP and third party apps since: 1)
The Android platform does not check for the matching of

1A file that contains the version and path information of the wearable app
APK.

permissions of third-party apps, 2) we cannot check if these
permissions are used or not because we do not know the
corresponding APIs for these permissions.

3) Identifying the Permission Model: To detect the per-
mission mismatches, we automated performing the following
steps. First, we check which permission model the app should
implement. To do so, we select the tag <uses-sdk> from the
manifest file of the handheld app and we read the value of the
attribute android:minSdkVersion. If the value is lower
than 23, then the app should match the permissions of the
embedded wearable app version with the handheld version’s
permissions.

4) Detecting Permission Mismatches: Based on the previ-
ous step, if the app is required to match the permissions, we
perform the process of detecting the permission mismatches.
The process starts by matching the two permissions lists that
we extracted from the handheld and the embedded apps. For
each permission requested in the embedded wearable app, we
check if it exists in the list of requested permissions in the
handheld app; if not, we report it as a permission mismatch.

C. Detecting Superfluous Features

To detect superfluous features, we start by extracting the
declared features form the manifest file. Next, we identify the
underlying features for the requested permissions. Then, for
each underlying feature, we check if the app is actually using
the corresponding permissions. Finally, we report the underly-
ing feature that belong to unused permissions as superfluous
features. Figure 2 (Section 2 ) illustrates the overview of our
automated approach.

1) Extract the Declared Features: To extract the features
that the app declared in its manifest file, we use a similar
approach to the process of extracting the requested permis-
sions that we illustrated in Section IV-B2. We target the
tags <uses-feature> in the manifest file; then for each
tag, we extract the value of two attributes: 1) the attribute
android:name to get the name of the feature, and 2) the at-
tribute android:required to check if the app is designed
to function without the feature or not.

2) Identifying the Underlying Features: In order to detect
the missed underlying features for an app, we start by iden-
tifying the underlying feature for all requested permissions
in the app’s manifest file. We depend in this step on a tool

5



0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10 >10

Th
e 

N
um

be
r 

of
 A

pp
s

The Number of Requested Permissions

Wearable

Handheld

Fig. 3: Histogram of the number of wearable and handheld
apps at each level of requested permissions.

called APKANALYZER [29] from the Android’s Software De-
velopment Kit (SDK). Among other things, this tool extracts
features that trigger the filtering of the Google Play store. The
output of this tool contains both of the features that are already
declared in the manifest file and the underlying features of
requested permissions. Also, if applicable, the tool’s output
includes a mapping between the underlying features and the
corresponding permissions. Finally, if a feature in the output
of the APKANALYZER does not exist in the list of declared
features that we extracted in the previous step, we report it as
a missed underlying feature.

3) Identify Unused Permissions: In order to use some
APIs, the Android Platform requires permissions. For example,
calling an API to access the microphone requires an internal
check by the Android platform for the permission to ensure
that the app has the permission RECORD_AUDIO.

To check which permissions an app uses, we need: 1) a
mapping between every public Android platform API and the
required permissions to use that API; and 2) the list of all
platform’s API calls that the app performs. Then, we link
the list of API calls that the app performs with the required
permissions for these APIs.

The permission mapping in our approach is based on
PSCOUT [1], a tool that extracts the permission specifications
from the Android platform source code using a static source
code analysis. On the API calls side, we depend on the tool
Androguard [30] to extract all possible API calls from apps.

At the end of this step, we have two lists of permissions:
1) the list of AOSP’s permissions that the app requests, which
we extracted them in Section IV-B2 ; and 2) the used permis-
sions by linking the API calls to their required permissions.
The requested permissions that does not appears in the list of
used permissions are considered as unused permissions.

4) Detecting Superfluous Features: Depending on the pre-
vious steps, for each missed underlying feature, we checked
its corresponding permission. If the permission does exist in
the list of unused permissions, we report its corresponding
feature(s) as a superfluous feature.

D. Generate the Final Report & Suggest Fixes

To operationalize our work we developed a tool, called
PERMLYZER (Permissions Analyzer), that automatically de-

TABLE I: THE MOST MISMATCHED PERMISSIONS IN THE
STUDIED APPS.

Permission Name Mismatch (%)

READ_CALENDAR 12.10
WAKE_LOCK 11.40
ACCESS_FINE_LOCATION 8.30
RECEIVE_COMPLICATION_DATA 7.60
VIBRATE 7.60
READ_PHONE_STATE 6.80
WRITE_EXTERNAL_STORAGE 6.80
READ_EXTERNAL_STORAGE 6.10
ACCESS_NETWORK_STATE 3.80
BODY_SENSORS 3.80
BLUETOOTH 3.00
INTERNET 2.30

tects the permission mismatches and the superfluous features.
The tool takes as input, a handheld app’s APK file of wear-
able app or an APK file of standalone wearable app. Based
on the detected problems the tool generates suggestions to
address the problems. Also, the tool auto-generates a new
AndroidManifest.xml file that implements the suggested
fixes. Although the tool is able to automatically generate a
corrected AndroidManifest.xml, we are not able to regenerate
the app’s APK since each individual APK needs a specific
certificate, which we do not have.

V. RESULTS

The main goal of our study is to detect and examine
permission related issues in the context of wearable apps.
Although some very recent work examined the permission
problems in mobile apps [31], to the best of our knowledge,
this is one of the first studies to exclusively focus on the
permission related issues in the context of wearable apps. In
addition to defining the main issues related to permission in
wearable apps, we also examine and quantify these permission
issues in a dataset of apps published on the Google Play store.
We formalize our study with the following two questions:

• RQ1: How widely does the permission mismatch problem
exist in wearable apps? In this question we want to
check the existence of the permission mismatch problem
in the published apps, so we run PERMLYZER on the
2,724 wearable apps. The tool checks if the app requires
matching the handheld/wearable permission, if so, the
tool reports the permission mismatches.

• RQ2: How do wearable apps declare the hardware
features of their permissions? To better understand the
problem of missing to declare the underlying features
in real word apps, we use PERMLYZER to analyze the
handheld and stand alone wearable apps and detect the
missed underlying features.

For each research question, we provide a motivation, ap-
proach, and discuss the result.

RQ1: How widely does the permission mismatch problem exist
in wearable apps?

Motivation: Since it is up to the developers to match the
wearable app permissions with the handheld app permissions,

6



1

2

5

10

20

(a) Handheld

1

2

5

(b) Standalone wearable

Fig. 4: The number of missed underlying features in the
studied apps.

developers may mismatch these permissions. Hence, our goal
is to quantify the number of wearable apps that suffer from
these permission mismatch problem.

Approach: To answer this research question, we use the
tool PERMLYZER that internally applies the approach that we
described in Section IV-B to detect the permission mismatches.
Matching the permissions is required when the wearable app
requests permissions that are not requested in it corresponding
handheld app. So, we discard the apps that do not request
any permissions in their wearable version from our analysis.
Figure 3 shows the number of requested permissions in the
studied wearable apps. Out of all embedded wearable apps,
541 apps do not request any permissions at all. Thus, they
are not required to match their permissions with the wearable
permissions. This filtering left us with a set of 2,178 apps
which we analyze to detect permission mismatches. We also
investigate what type of permissions are most likely to be
mismatched.

Findings: The results show that all the 2,178 wearable apps
in the analyzed dataset are built to be compatible with platform
versions that require matching the permission between wear-
ables and handhelds (i.e., Android API versions below 23).
We find that 132 (6.1%) of the examined apps suffer from the
permission mismatch problem. Of these 132 apps, the number
of mismatched permissions ranges between 1 to 6 permission
mismatches, with a median of one mismatched permission
per app. An example, AutomateIt.mainPackage app
requests the permission READ_EXTERNAL_STORAGE in the
wearable app, but does not request the same permission in the
handheld version.

Table I shows the mismatched permission types and the
number of cases for each of them. We observe that the
most commonly missed permissions are related to access the
calendar, power manager, and location.

Out of the 2,178 apps that request permissions in its
embedded wearable apps, 6.1% suffer from the permission
mismatch problem in their last released version on Google
Play store.

TABLE II: THE UNDERLYING FEATURES WITH THE PER-
CENTAGE OF HANDHELD AND STANDALONE WEARABLE
APPS THAT DECLARED/MISSED THE UNDERLYING FEA-
TURES.

Handheld (%) Standalone (%)
Feature Name Missed Declared Missed Declared

bluetooth 27.5 - 4.8 -
camera 3.0 - - -
location 62.9 0.2 2.5 -
location.gps 4.0 - - -
location.network 3.1 - - -
microphone 12.4 0.1 0.8 -
telephony 8.5 - - -
wifi 42.4 0.2 1.2 -

RQ2: How do wearable apps declare the hardware features
of their permissions?

Motivation: In this research question, first we want to study
how apps declare their hardware features for their requested
permissions. Thus, we examine the use of this functionality in
the published wearable apps on the Google Play store. Second,
we study the missed underlying features and examine if they
are superfluous features or not.

Approach: We run the PERMLYZER tool on the 2,724
handheld apps and the 339 standalone wearable apps. Since,
we focus on the declaration of hardware features, we exclude
apps that do not request permissions that depend on a hard-
ware feature. So, we end up with 999 handheld app and 82
standalone wearable apps.

Findings: We find that all the studied handheld and stan-
dalone wearable apps missed a declaration of underlying
features for one or more of their permissions. For example,
the handheld app slide.watchFrenzy requests the per-
mission ACCESS_WIFI_STATE without declaring its under-
lying feature android.hardware.wifi. Moreover, while
28.3% of the apps declare at least one hardware feature, we
find that only 5 apps out of the 999 handheld apps declare
any underlying features for their permissions; and none of the
standalone wearable apps declare any underlying features. This
shows that developers may not know the mapping between the
permissions they request and the hardware features. Figure 4
shows the count of missed underlying features in both of the
handheld apps and embedded wearable apps. On median the
studied handheld apps missed to declare 2 hardware features
and 17 at max. For the standalone wearable apps, on median
they missed 1 hardware feature and at max 5 features.

To emphasize the underlying feature declarations, Table II
shows the features (Column 1) with the percentage of apps
that declared it as underlying feature (Column 3 & 5) and the
percentage of apps that missed to declare the feature (Column
2 & 4). We observe that the handheld apps mostly missed
the declaration of location, wifi, and bluetooth feature. For
the standalone wearable apps, bluetooth, camera, wifi, and
microphone are the missed underlying features. For example,
the standalone wearable app com.jeremysteckling.facerrel re-
quests ACCESS_WIFI_STATE permission without declaring
its underlying feature android.hardware.wifi. As a

7



TABLE III: LIST OF UNUSED PERMISSIONS THAT INTRO-
DUCED SUPERFLUOUS FEATURES WITH THE PERCENTAGE
OF AFFECTED HANDHELD APPS.

Permission Name Feature Name Apps
(%)

ACCESS_WIFI_STATE wifi 14.3
BLUETOOTH bluetooth 12.7
BLUETOOTH_ADMIN bluetooth 10.7
ACCESS_COARSE_LOCATION location 9.4
ACCESS_FINE_LOCATION location 6.4
CHANGE_WIFI_STATE wifi 6.4
READ_SMS telephony 5.2
RECORD_AUDIO microphone 4.4
RECEIVE_SMS telephony 3.2
CHANGE_WIFI_MULTICAST_STATE wifi 1.9
CAMERA camera 1.4
PROCESS_OUTGOING_CALLS telephony 1.3
ACCESS_LOCATION_EXTRA_COMMANDS location 1.1
WRITE_SMS telephony 0.8
SEND_SMS telephony 0.7
ACCESS_FINE_LOCATION location.gps 0.5
ACCESS_MOCK_LOCATION location 0.5
ACCESS_COARSE_LOCATION location.network 0.4
RECEIVE_MMS telephony 0.4
RECEIVE_WAP_PUSH telephony 0.2
WRITE_APN_SETTINGS telephony 0.2
CALL_PRIVILEGED telephony 0.1
MODIFY_PHONE_STATE telephony 0.1

result, the app is not available for the wearable devices that
do not support the Wi-Fi connectivity.

Also, we found that 523 (52.4%) of the hand-
held apps and 66 (80.5%) of the standalone wear-
able apps have at least one superfluous feature. An ex-
ample is the app com.runar. wearcompass, which
requests the permissions ACCESS_COARSE _LOCATION
and ACCESS_FINE_LOCATION without using their cor-
responding APIs. At the same time, the app does
not declare that it does not depend on the feature
android.hardware.location which make Google
Play store filters the app from devices that do not provide
the functionality of detecting the location.

Table III shows the list of permissions that introduce the
superfluous feature in the studied handheld apps; for each
one of them, we calculate the percentage of affected apps.
From this table we can see that the highest percentage of
apps are affected by superfluous features that were introduced
by the permissions ACCESS_WIFI_STATE, BLUETOOTH,
and BLUETOOTH_ADMIN with percentage value of 14.3%,
12.7%, and 10.7% respectively. For standalone apps, Table IV
shows that the most superfluous features are introduced by
the permission BLUETOOTH with 50.0% and the permission
ACCESS_FINE_LOCATION with 18.3%. We observe that
the highest percentage of apps in both of the handheld and
standalone wearable apps are affected by superfluous features
caused by permissions related to network communication and
location detection.

Out of the apps that requires underlying features, 523
(52.4%) of handheld apps and 66 (80.5%) of standalone
wearable apps have at least one superfluous feature.

TABLE IV: LIST OF UNUSED PERMISSIONS THAT INTRO-
DUCED SUPERFLUOUS FEATURES WITH THE PERCENTAGE
OF AFFECTED STANDALONE WEARABLE APPS.

Permission Name Feature Name Apps (%)

BLUETOOTH bluetooth 50.0
ACCESS_FINE_LOCATION location 18.3
ACCESS_WIFI_STATE wifi 6.1
BLUETOOTH_ADMIN bluetooth 6.1
ACCESS_COARSE_LOCATION location 2.4
CHANGE_WIFI_STATE wifi 2.4
CHANGE_WIFI_MULTICAST_STATE wifi 1.2
RECORD_AUDIO microphone 1.2

VI. DISCUSSION

In this section, we examine the context of our findings. First,
we discuss the problem of unused permissions in the wearable
apps. Then, we discuss the relation between the wearable
permission model and detection overprivileged permission in
handheld apps. Finally, we discuss the developers’ perspective
about permission related issues in wearable apps.

A. The Relation between Permissions Mismatch and Unused
Permissions.

Throughout the evolution of an app, developers may in-
troduce and remove different permissions. Previous work
showed that mobile apps tend to have more overprivileged
permissions (i.e., apps that ask for more permissions than they
require/need) [32, 33]. As we describe in the Section II-B,
permissions requested in an embedded wearable app may
need to be requested in the corresponding handheld app as
well. Since wearable and handheld apps are in two separated
modules; developers have to reflect changes in multiple places.
This permission model could be error-prone and increase the
chance to leave more unused permissions in the manifest file.

To understand how the requirement of matching the wear-
able permissions affects the amount of unused permissions in
handheld apps, we examine the amount of unused permissions
in the handheld apps that are requested in their embedded
wearable apps. We used PERMLYZER to extract all unused
permissions from the handheld apps. Next, for each app the
tool extracts the embedded wearable app and checks if the
unused permissions are requested in the embedded version.

The results showed that; 1) 56.2% (1,532) of handheld apps
have unused permissions; 2) by analyzing their embedded
wearable apps, we observe that 24.2% (371) of handheld
apps with unused permissions are requesting all the unused
permissions in their wearable version. Furthermore, we find
44.3% (678) of them are requesting at least one of their unused
permissions in the wearable version. For example, the app
com.ppltalkin.findmywatch requests the permissions
WAKE_LOCK and RECORD_AUDIO in the handheld without
using their corresponding APIs, however, the app request these
permissions in its wearable version.

Felt et al. [8] studied 795 mobile apps and showed that
32.7% of them have unused permissions. More recently, Wei
et al. [33] studied 1,703 app versions and found that 33.2%
of them have unused permissions. By comparing the unused

8



permissions in the wearable apps, we find that wearable apps
have about 1.7X more unused permissions. As the comparison
shows, the permission matching requirement can be a factor
to introduce unused permissions in handheld apps.
B. Overprivileged Permissions Vs. Unused Permissions.

Overprivileged permissions are permissions that apps re-
quest but their corresponding APIs never use. So, removing
those permissions should not affect the app functionality.
These overprivileged permissions could introduce vulnerabili-
ties and raise security concerns [33].

Several studies analyzed the permissions for apps pub-
lished on the Google Play store and focused on explaining
the permission usage and its implications on security and
privacy [4, 5, 6, 7], evolution over time [33, 32], discover
permission misuses and overprivilegesd [2, 1, 8] and suggest
which permissions should be requested [9, 10, 11]. To the
best of our knowledge, previous studies do not consider the
notion of wearable apps when they perform their analysis
that deals with the problem of overprivileged permissions. So,
permissions that are not mapped to an API call are consid-
ered as overprivileged; although for wearables, the handheld
apps may hold unused permissions to satisfy the permission
matching requirement. Hence, not all of the unused permission
necessary are overprivileged permissions.

Our analyses shows that out of all apps that request unused
permissions, only 55.7% of them have all of their unused per-
missions are legitimately privileged. And 24.4% of all unused
permissions in wearable apps are legitimately privileged. The
evidence shows that a high percentage of unused permissions
in wearable apps are legitimately privileged. Thus, it is useful
for follow up research to consider the notion of wearable apps
in order to improve the accuracy of their results when they
analyze such apps.
C. Wearable App Developers’ Perspective.

Thus far, our analysis has been quantitative in nature. To
triangulate our findings and better understand and evaluate the
importance of our approach of detecting permission related
issues in wearable apps, we perform a complementary qual-
itative analysis to understand: 1) the developers perspective
about permission related issues in wearable apps and 2) if
they consider our proposed technique to be useful.

To do so, we designed an online survey. The survey in-
cluded four main sections: 1) three questions regarding the
participant’s background and experience in the development of
wearable apps, 2) a Likert-scale question about the difficulty
of catching permission related issues in wearable apps, 3)
three questions asking if the developers knows that there
are permission issues that exist in their wearable apps and
how they discover them, and 4) if the developers thinks that
having a tool like PERMLYZER (e.g., a plugin in your IDE) to
identify permission related issues in wearable apps based on
our proposed techniques would be useful.

To identify the target population, for apps that we deter-
mined to have permission related issues, we collected the
developers’ names and their email addresses and the version

and name of their wearable apps. In total, we found 110 unique
developers for 160 wearable apps. We then randomly selected
100 unique wearable apps developers and we successfully sent
the survey to 82 of them (for some the email address bounced).
We received 7 responses, i.e., the response rate is approxi-
mately 9%. Although this is a low number of responses, it is
in line with, and even higher, than the typical 5% response
rates reported in software engineering surveys [34].

Of the seven respondents, five identified themselves as
having wearable app development experience between two to
five years, and two have more than five years of wearable
apps development experiences. All the participants claim to
have more than two published wearable apps.

The majority of the developers (6 out of the 7) mentioned
that catching permission related issues in wearable apps to be
difficult. Only one participant indicated that catching permis-
sion issues to be a ‘trivial task’. However, when we asked the
participants whether they know that the identified permission
issues existed in their apps, five participants stated that they
know that their apps suffer from permission issues. While
two participants do not know that their wearable apps have
permission issues. For the participants who know about the
permission issues in their apps only one developer fixed the
permission issues and said that “I was going to add a feature
which had that permission but did not add the feature”.
One possible reason for that is the lack of an automated
tool to detect and fix these permission issues. Finally, all
seven of our survey participants mentioned that having a tool
like PERMLYZER or plugin such as the one we propose will
definitely be useful.

VII. RELATED WORK

In this section, we describe work that is related to our study.
To the best of our knowledge no previous work exists that
studies the permission related issues in wearable apps.

Recently, Mujahid et al. [35] studied the user complaints
of wearable apps by analyzing 589 reviews from 6 Android
wearable apps. One of their findings indicates that amongst
other, users complain mostly about functional errors and
missing notifications on wearable apps. Zhang and Rountev
[36] presented formal semantics to statically model the notifi-
cation mechanism of Android Wear and contributed with the
development of two domain-specific tools, one for test case
execution, and another for automated test generation. Ahola
[37] exposed three issues and limitations found in the Android
Wear platform during wearable app development that are: bet-
ter wear Internet connectivity, virtual button support for watch
faces, and software configurable language support for voice
input. From a different perspective, Lyons [38] did a study
on the user perceptions about the functionality and design of
smartwatches, including android wearable devices. Chauhan
et al. [39] did a previous categorization of smartwatch apps
from Samsung, Apple and Android Wear. They used Android
Wear Center [26] and GoKo store [27] as sources to get the
wear app identifiers for crawling their information; we applied
the same approach to initialize our crawling phase.

9



Other prior studies focused on permission issues in the con-
text of Android apps [10, 9, 2]. For example, several studies
found that issues and misuses of declaring app permissions are
common in handheld apps [2, 40, 1]. Also, a number of studies
proposed techniques that provide API to perform permission
mappings in order to mitigate missed permissions [1, 8]. Jha
et al. [3] studied mistakes in Android manifests for mobile
apps, and found that more than 78% of the studied apps have at
least one configuration error. Android lint [41] is an analysis
tool built by Google that statically analyzes source code files,
including manifest files. ManifestInspector [3] is one of the
performing tools when it comes to detecting errors in Android
manifest files; this tool’s functionality is based on a number of
effective rules. Currently, lint (in Android Studio 1.5) defines
only 30 rules related to manifest files while ManifestInspector
defines 116 rules. However, none of these rules target the
specialty of manifest files’ configuration for wearable apps.
Wei et al. [33] conducted a study on the evolution of Android
permissions, focusing on the differences between pre-installed
and third party apps. They analyzed patterns and permission
distributions, and reported that apps tend to be overprivileged
and to request more permissions over time.

Our study differs from prior work since we focus on the
inconsistent configuration problems that may exist between
wearable and handheld versions of an app. More specifically,
we study the permission related issues.

VIII. THREATS TO VALIDITY

In this section, we disuses threats to validity of our study.
Threats to Internal Validity: Our results depend on the

accuracy of the used tools. To detect the unused permission,
the presented approach relies on ANDROGUARD [30] tool to
extract the platform API calls using a static analysis approach
and on the mapping of PSCOUT [1] tool to link the platform
APIs with the corresponding permission. To help alleviate
this threat, we manually investigated some of the reported
results as unused permissions and in all cases the manually
examined cases were correct. We also use APKTOOL [28] to
retrieve the original AndroidManifest.xml. Our process
is only as accurate as the APKTOOL. For instance, the retrieved
XML file could be missing some comments, having extra
elements that were added in the compilation phase and/or
have different space formatting. That said, we examine some
of retrieved XML files and found that they do not have
any missing elements that could affect our approach. Our
results also include only Android Open Source Project (AOSP)
permissions in the process of analyzing unused permissions.
Other third party permission could have different pattern in
term of declare the unused permissions.

To extract the embedded wearable APKs, we rely on ex-
tracting the path of the wearable APK from the handheld
Manifest file. However, in some cases, the handheld Manifest
file may not have the path of the wearable APK file, or have
an incorrect APK path. To deal with these cases, we developed
three heuristics. Thus, our approach may produce false positive
cases. To help alleviate this issue, we manually investigated

some of the extracted cases and found that, in all cases, our
heuristics extract the correct embedded wearable APK path.

To understand and evaluate the importance of our approach
of detecting permission related issues in wearable apps, we
conducted an online survey. We contacted 82 developers of
wearable apps that we determined to have permission related
issues and received 7 (∼9%) responses. While this response
rate may be considered small, it is acceptable in questionnaire-
based software engineering surveys [34].

Threats to External Validity: We apply our techniques on
free wear apps only, because of this, our results may not be
generalizable to paid wearable apps. Also, our empirical study
is based on apps that are already published on Google Play
store. This means our results may not reflect the permission
related issues in other app stores. The permission matching
model are required only for wearable apps that need to support
devices run API level lower than 23. However, a snapshot of
data represents all the devices that visited the Google Play
store shows that more than 50% of devices running on Android
version with API level lower than 23 [12], which highlight the
importance of supporting such devices.

IX. CONCLUSION

Wearable apps’ popularity is increasing. In fact, based on
our data collection, the Google Play store contains more
than 5,077 wearable apps. In this paper, we defined two
permission issues related to wearable apps–namely permission
mismatches and superfluous features. To study the permission
related issues, we propose a technique to detect permission
issues in wearable apps. We implement our technique in a
tool called PERMLYZER, which automatically detects these
permission problems from an app’s APK. We run PERMLYZER
on a dataset of 2,724 apps that have embedded wearable
version and 339 standalone wearable app. Our result shows
that I) 6% of wearable apps that request permissions are
suffering from the permission mismatching problem; II) out
of the apps that requires underlying features, 523 (52.4%) of
handheld apps and 66 (80.5%) of standalone wearable apps
have at least one superfluous feature; III) all the studied apps
missed a declaration of underlying features for one or more
of their permissions, which shows that developers may not
know the mapping between the permissions they request and
the hardware features. In a survey of wearable app developers,
all of the developers that responded mention that having a tool
like PERMLYZER, that detects permission related issues would
be useful to them.

The result in this paper outline some directions for future
work. First, to gain practical feedback from developers about
the advantages of using our tool (PERMLYZER), we plan to
submit the fixed AndroidManifest.xml to the wearable app
repository that suffer from these permission problems. Also,
we plan to perform an in-depth investigation to understand
what are the root causes that introduce these permission
problems in wearable apps. Finally, understanding the relation
between the domain of the wearable apps and the most
common missed permissions is another interesting point for
future work.

10



REFERENCES

[1] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout:
Analyzing the android permission specification,” in Pro-
ceedings of the ACM Conference on Computer and
Communications Security, ser. CCS ’12. ACM, 2012,
pp. 217–228.

[2] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen,
“Asking for (and about) permissions used by android
apps,” in Proceedings of the 10th Working Conference
on Mining Software Repositories, ser. MSR ’13. IEEE
Press, May 2013, pp. 31–40.

[3] A. K. Jha, S. Lee, and W. J. Lee, “Developer mistakes in
writing android manifests: An empirical study of config-
uration errors,” in Proceedings of the 14th International
Conference on Mining Software Repositories, ser. MSR
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 25–36.

[4] M. L. Dering and P. McDaniel, “Android market recon-
struction and analysis,” in Proceedings of the IEEE Mil-
itary Communications Conference, ser. MILCOM ’14.
IEEE Computer Society, 2014, pp. 300–305.

[5] T. Watanabe, M. Akiyama, T. Sakai, and T. Mori, “Un-
derstanding the inconsistencies between text descriptions
and the use of privacy-sensitive resources of mobile
apps,” in Proceedings of Eleventh Symposium On Us-
able Privacy and Security, ser. SOUPS ’15, USENIX
Association. USENIX, 2015, pp. 241–255.

[6] T. Book, A. Pridgen, and D. S. Wallach, “Longitudi-
nal analysis of android ad library permissions,” arXiv
preprint arXiv:1303.0857, 2013.

[7] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight
mobile phone application certification,” in Proceedings of
the 16th ACM Conference on Computer and Communica-
tions Security, ser. CCS ’09. ACM, 2009, pp. 235–245.

[8] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android permissions demystified,” in Proceedings of the
18th ACM Conference on Computer and Communica-
tions Security, ser. CCS ’11. ACM, 2011, pp. 627–638.

[9] M. Y. Karim, H. Kagdi, and M. D. Penta, “Mining
android apps to recommend permissions,” in Proceedings
of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering, ser. SANER ’16,
vol. 1. IEEE Press, March 2016, pp. 427–437.

[10] L. Bao, D. Lo, X. Xia, and S. Li, “What permissions
should this android app request?” in Proceedings of
International Conference on Software Analysis, Testing
and Evolution, ser. SATE ’16, Nov 2016, pp. 36–41.

[11] ——, “Automated android application permission recom-
mendation,” Science China Information Sciences, vol. 60,
no. 9, p. 092110, Jul 2017.

[12] Android documentation, “Dashboards,” https:
//developer.android.com/about/dashboards/index.html,
2017, accessed on October 31, 2017.

[13] S. Mujahid, G. Sierra, R. Abdalkareem, E. Shihab, and
W. Shang, “An empirical study of android wear user
complaints,” Empirical Software Engineering, Mar 2018.

[14] Android documentation, “uses-feature,” https:
//developer.android.com/guide/topics/manifest/
uses-feature-element.html, 2017, accessed on October
6, 2017.

[15] S. Mujahid, R. Abdalkareem, and E. Shihab,
“The dataset of wearable permission analyses,”
2018. [Online]. Available: http://das.encs.concordia.ca/
publications/wearable-permissions-data

[16] Android documentation, “App manifest,”
https://developer.android.com/guide/topics/manifest/
manifest-intro.html, 2017, accessed on November 30,
2017.

[17] ——, “uses-sdk element,” https://developer.android.com/
guide/topics/manifest/uses-sdk-element.html, 2017, ac-
cessed on October 4, 2017.

[18] ——, “Packaging wearable apps,” https://developer.
android.com/training/wearables/apps/packaging.html,
2017, accessed on January 19, 2017.

[19] ——, “Standalone apps,” https://developer.android.com/
training/wearables/apps/standalone-apps.html, 2017, ac-
cessed on November 30, 2017.

[20] ——, “Requesting permissions at run time,”
https://developer.android.com/training/permissions/
requesting.html, 2017, accessed on October 4, 2017.

[21] ——, “Requesting permissions on android wear,”
https://developer.android.com/training/articles/
wear-permissions.html, 2017, accessed on October
31, 2017.

[22] ——, “Device compatibility,” https://developer.android.
com/guide/practices/compatibility.html, 2017, accessed
on October 4, 2017.

[23] ——, “Multiple apk support,” https://developer.android.
com/google/play/publishing/multiple-apks.html, 2017,
accessed on October 4, 2017.

[24] ——, “Packaging wearable apps,” https://developer.
android.com/training/wearables/apps/packaging.html,
2017, accessed on January 19, 2017.

[25] S. Mujahid, “Detecting wearable app permission mis-
matches: A case study on android wear,” in Proceedings
of the 11th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE ’17. ACM, 2017, pp.
1065–1067.

[26] Wearable Software, “Android wear center,” http://www.
androidwearcenter.com, 2016.

[27] J. Korner, L. Hitzges, and D. Gehrke, “Goko,” http://
goko.me, 2016.

[28] C. Tumbleson and R. Winiewski, “Apktool - a tool for re-
verse engineering 3rd party, closed, binary android apps.”
https://ibotpeaches.github.io/Apktool/, 2017, accessed on
May 4, 2017.

[29] Android Studio, “Apk analyzer tool,” https://developer.
android.com/studio/command-line/apkanalyzer.html,
2017, accessed on December 1, 2017.

[30] A. Desnos and G. Gueguen, “Androguard: Re-
verse engineering, malware and goodware analysis
of android applications),” https://github.com/androguard/

11

https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/guide/topics/manifest/uses-feature-element.html
https://developer.android.com/guide/topics/manifest/uses-feature-element.html
https://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://das.encs.concordia.ca/publications/wearable-permissions-data
http://das.encs.concordia.ca/publications/wearable-permissions-data
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/training/wearables/apps/packaging.html
https://developer.android.com/training/wearables/apps/packaging.html
https://developer.android.com/training/wearables/apps/standalone-apps.html
https://developer.android.com/training/wearables/apps/standalone-apps.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/articles/wear-permissions.html
https://developer.android.com/training/articles/wear-permissions.html
https://developer.android.com/guide/practices/compatibility.html
https://developer.android.com/guide/practices/compatibility.html
https://developer.android.com/google/play/publishing/multiple-apks.html
https://developer.android.com/google/play/publishing/multiple-apks.html
https://developer.android.com/training/wearables/apps/packaging.html
https://developer.android.com/training/wearables/apps/packaging.html
http://www.androidwearcenter.com
http://www.androidwearcenter.com
http://goko.me
http://goko.me
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/studio/command-line/apkanalyzer.html
https://developer.android.com/studio/command-line/apkanalyzer.html
https://github.com/androguard/androguard


androguard, 2017, accessed on November 27, 2017.
[31] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A

survey of app store analysis for software engineering,”
IEEE Transactions on Software Engineering, vol. 43,
no. 9, pp. 817–847, Sept 2017.

[32] P. Calciati and A. Gorla, “How do apps evolve in their
permission requests? a preliminary study,” in Proceed-
ings of 14th IEEE/ACM International Conference on
Mining Software Repositories, ser. MSR ’17, May 2017,
pp. 37–41.

[33] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Per-
mission evolution in the android ecosystem,” in Proceed-
ings of the 28th Annual Computer Security Applications
Conference, ser. ACSAC ’12. ACM, 2012, pp. 31–40.

[34] J. Singer, S. E. Sim, and T. C. Lethbridge, “Software
engineering data collection for field studies,” in Guide
to Advanced Empirical Software Engineering. Springer
London, 2008, pp. 9–34.

[35] S. Mujahid, G. Sierra, R. Abdalkareem, E. Shihab, and
W. Shang, “Examining user complaints of wearable apps:
A case study on android wear,” in Proceedings of the 4th
International Conference on Mobile Software Engineer-
ing and Systems, ser. MOBILESoft ’17. Piscataway, NJ,
USA: IEEE Press, 2017, pp. 96–99.

[36] H. Zhang and A. Rountev, “Analysis and testing of
notifications in android wear applications,” in Proceed-

ings of the 39th International Conference on Software
Engineering, ser. ICSE ’17. IEEE Press, 2017.

[37] J. Ahola, “Challenges in android wear application devel-
opment,” in Proceedings of the 15th International Con-
ference on Web Engineering, ser. ICWE ’15. Springer,
2015, pp. 601–604.

[38] K. Lyons, “What can a dumb watch teach a smartwatch?:
Informing the design of smartwatches,” in Proceedings
of the 2015 ACM International Symposium on Wearable
Computers, ser. UbiComp ’15, ACM. ACM, 2015, pp.
3–10.

[39] J. Chauhan, S. Seneviratne, M. A. Kaafar, A. Ma-
hanti, and A. Seneviratne, “Characterization of early
smartwatch apps,” in Proceedings of the 2016 IEEE
International Conference on Pervasive Computing and
Communication Workshops, ser. PerCom ’16. IEEE,
2016, pp. 1–6.

[40] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and
A. Somayaji, “A methodology for empirical analysis of
permission-based security models and its application to
android,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security, ser. CCS ’10.
ACM, 2010, pp. 73–84.

[41] Android Studio, “Improve your code with lint,” https:
//developer.android.com/studio/write/lint.html, 2017, ac-
cessed on June 11, 2017.

12

https://github.com/androguard/androguard
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/write/lint.html

